MATH 2250 Calculus 1 Name:
Eric Perkerson Date: November 2, 2015

Practice Test No. 3

Show all of your work, label your answers clearly, and do not use a calculator.

Problem 1 State the following theorems:

a Rolle’'s Theorem
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b The Mean Value Theorem
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Problem 2
a Does the Mean Value Theorem apply to the function f(z) = |z| on the interval [—1,1]?
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b  Does the Mean Value Theorem apply to the function g(z) = 1/z on the interval [0,1]?
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Problem 3 A box with a square base and an open top must have a volume of 32,000
cm®. Find the dimensions of the box that minimizes the amount of material used.
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Problem 4 Below is a graph of the derivative of f(z). This is a graph of f/(z); do not

make the mistake of thinking this is a graph of f(z). Use this graph to answer the following
questions about f(z), f'(z), and f"(z).
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b  Where does the function f/(z) have critical points? ,
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f Where is the function f”(x) increasing?
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g Where does the function f(z) have inflection poi

¥ form e b do oo e Lt o

h  Where does the function f/(x) have inflection points'?
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i Wh re is the function f (z‘) concave up"’

j  Where is the function f/(z) concave up?
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Problem 5 Below is a graph of f(z). Use this graph to answer the following questions
about f(z), f

o

b

d

'(2), and f"(z).
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Where does the function f(z) have critical points?
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Where does the function f’ (:1:) have cratlcal points?
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Where is the function f(z) increasing?
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Where is the function f’(z) increasing?
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Where is the function f(z) concave up?
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Problem 6 For the given graph of f(z), answer the questions below.

a Where does the function f(z) have points where f'(x) does not exist?

s~ .0

b Where does the{'unctién f(z) have points where f'(z) = 07
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¢ Where does the function f(z) have relative maxima?
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d  Where does the function f(z) have relative minima?
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€ Where does the function f(z) have global maxima?
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f Where does the function f(z) have global minima?
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Problem 7

a Use the function f(z) = x® + = + 1 and the starting point zy = 1 to Tun two iterations of Newton’s
method, i.e. find z; and z3. (You do not have to simplify z).
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b On the graph of f(z) below, show graphically what Newton’s method is doing. (You should be drawing
some lines on the graph).




Problem 8 Evaluate the following limits, making sure that if you use L’Hopital’s rule
you have written sufficient justification:
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Problem 9 Find the global maximum and global minimum of the function given by
f(z) = —(x + 1)3 + 3 on the interval [—2, 2] and where each of these values occur.
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Problem 10 Given the function f(z) = (z + 7)(z + 4)(z + 3)x on the interval [—7,0],
answer the following questions:

a What are the z-intercepts of f(z)?
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b I'll go ahead and tell you that the derivative is f'(z) = 2(z + 1)(z + 6)(2z + 7). What are the critical
points of f(z)?
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¢ On which intervals is f(z) increasing?
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d Classify the critical points of f(z) as local maxima, local minima, or neither.
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f Sketch the graph of f(z). (Don’t worry about concavity for this problem). ’C ( 6% C
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Problem 11 You are sitting in a classroom next to the wall looking at the blackboard
at the front of the room. The blackboard is 12 ft long and starts 3 ft from the wall you are
sitting next to. What is the maximum viewing angle, a?
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